
NCSTRL+: Adding Multi-Discipline and Multi-Genre Support to
the Dienst Protocol Using Clusters and Buckets

Michael L. Nelson
NASA Langley Research Center, MS 158, Hampton, VA, 23681-0001

m.l.nelson@larc.nasa.gov

Kurt Maly, Stewart N. T. Shen, Mohammad Zubair
Old Dominion University Computer Science Department, Norfolk VA, 23529

{maly, shen, zubair}@cs.odu.edu

Abstract

We describe NCSTRL+, a unified, canonical
digital library for scientific and technical
information (STI). NCSTRL+ is based on the
Networked Computer Science Technical Report
Library (NCSTRL), a World Wide Web (WWW)
accessible digital library (DL) that provides
access to over 100 university departments and
laboratories. NCSTRL+ implements two new
technologies: cluster functionality and publishing
ÒbucketsÓ. We have extended Dienst, the
protocol underlying NCSTRL, to provide the
ability to ÒclusterÓ independent collections into a
logically centralized digital library based upon
subject category classification, type of
organization, and genres of material. The bucket
construct provides a mechanism for publishing
and managing logically linked entities with
multiple data forms as a single object. The
NCSTRL+ prototype DL contains the holdings
of NCSTRL and the NASA Technical Report
Server (NTRS). The prototype demonstrates the
feasibility of publishing into a multi-cluster DL,
searching across clusters, and storing and
presenting buckets of information.

1. Introduction

Digital libraries (DLs) are an important research
topic in many scientific communities and have
already become an integral part of the research
process. However, access to these DLs is not as
easy as users would like. Digital library projects
are partitioned by both the discipline they serve
(computer science, aeronautics, physics, etc.) and
by the format of their holdings (technical reports,
video, software, etc.). A recent survey found

over 10 existing or recent different World Wide
Web (WWW) oriented digital library projects
spanning over a range of different disciplines [6].
In short, each community is hand crafting their
own digital library infrastructure.

The convergence of several technologies
and importance of cross-disciplinary research is
necessitating a need for multi-disciplinary DLs.
There are two significant problems with current
DLs. First, interdisciplinary research is difficult
because the collective knowledge of each
discipline is stored in incompatible DLs that are
known only to the specialists in the subject. The
second significant problem is that although
scientific and technical information (STI)
consists of manuscripts, software, datasets, etc.,
the manuscript receives the majority of attention,
and the other components are often discarded [21].
Although non-manuscript digital libraries such as
the software archive Netlib [4] have been in use
for some time, they still place the burden of STI
reintegration on the customer. A NASA study
found that customers desire to have the entire set
of manuscripts, software, data, etc. available in
one place [20]. With the increasing availability
of all-digital storage and transmission, the re-
integration of the STI output back to its original
state is possible.

Old Dominion University and NASA
Langley Research Center are developing
NCSTRL+ to address the multi-discipline and
multi-genre problems. NCSTRL+ is based on
the Networked Computer Science Technical
Report Library (NCSTRL) [5], which is a highly
successful digital library offering access to over
100 university departments and laboratories since
1994, and is implemented using the Dienst
protocol [11]. During the development stage,
NCSTRL+ includes selected holdings from the

Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries
 (IEEE ADL Ô98), Santa Barbara, CA, April 22-24, 1998, pp. 128-136.

NASA Technical Report Server (NTRS) [16] and
NCSTRL, providing clusters of collections along
the dimension of disciplines such as aeronautics,
space science, mathematics, computer science,
and physics, as well as clusters along the
dimension of publishing organization and genre,
such as project reports, journal articles, theses,
etc. NCSTRL+ holdings will be published in
buckets [18], an object-oriented construct for
creating and managing collections of logically
related information units as a single object. A
bucket can contain both different data syntax
(PostScript, PDF, Word, etc.) and different data
semantics (manuscripts, data files, images,
software, etc.)

2. Background

The core technology for NCSTRL+ has
existed for several years. In 1992, the ARPA-
funded CS-TR project [8] began as did the
Langley Technical Report Server (LTRS) [17].
In 1993, the Wide Area Technical Report Server
(WATERS) [14] shared a code base with LTRS.
In 1994, LTRS launched the NTRS [16], and the
CS-TR and WATERS projects formed the basis
for the current NCSTRL. In 1997, NTRS and
NCSTRL formed the basis for NCSTRL+.

We chose to implement NCSTRL+
using Dienst instead of other digital library
protocols such as TRSkit [19] because of
DienstÕs success in several years of production in
NCSTRL. Dienst appears to be the most
scalable, flexible, and extensible of digital library
systems we surveyed [6]. Dienst also serves as
the basis for other focused digital library projects,
including: the Electronic Thesis and Dissertation
Project [7], the University of Virginia
undergraduate engineering thesis project [22] and
the ACM SIGIR conference proceedings project
(which requires ACM authentication) [1].

Our buckets are similar in concept to
the Òdigital objectsÓ first proposed in [10]. It is
important to note that many services have had
Òproto-bucketsÓ in operation for some time.
However, they provide only different formats of a
single manuscript, or may support the concept of
separate pages within a manuscript. They do not
support an interface to a collection of related
objects such as the manuscript, software,
datasets, etc. We chose the term ÒbucketsÓ
because related terms such as ÒobjectsÓ,
ÒpackagesÓ and ÒcontainersÓ are greatly overloaded
in the computer science realm and because

ÒbucketsÓ provide a clear visual metaphor for the
concept when speaking with non-computer
scientists.

There are other projects that are
modifying Dienst to support functionality
similar to clustering. ArquiTec [3] is a project of
the Portuguese National Library. Among some
additional features, ArquiTec adds the distinction
of ÒofficialÓ, ÒformalÓ and ÒinformalÓ documents
to Dienst which is somewhat similar to our
definition of clusters. Also, the MeDoc project
[2] has built in support in Dienst for hierarchical
partitioning of authoring institutions and
partitioning along the language of the reports
(e.g., English, German, etc.). Both the ArquiTec
and MeDoc projects add cluster-like
functionalities, but neither are generalized for the
purposes of subject, genre and organization as we
have defined them.

3. Clusters of Dienst Servers

While Dienst is a successful production
quality DL protocol, it has some inherent
limitations that prevent additional features from
being added. Among these is the inability to
subdivide collections along anything other than
institutional boundaries.

3.1 Overview of Dienst

While Dienst is discipline independent,
it is currently discipline monolithic. It makes no
provision for knowledge of multiple subjects
within its system. While it is possible to set up
a collection of Dienst servers independent of
NCSTRL, there is no provision for linking such
collections of servers into a higher level meta-
library. Dienst consists of 5 components: 1)
Repository Service; 2) Index Service; 3) Meta-
Service; 4) User Interface Service; and 5) Library
Management Service. Each of the services has a
list of valid ÒverbsÓ that the service understands,
and some of the verbs can take arguments.
Dienst uses the hypertext transfer protocol
(HTTP) as a transport protocol. The standard
format is:

http://host:port/Dienst/Service/Version/Verb/Arguments

An example of a valid Dienst request is:

http://repository.larc.nasa.gov:8080/Dienst/UI/2.0/Search

This contacts the Meta-Server service at
repository.larc.nasa.gov and requests a list of
publishing authorities that this machine
contains. Dienst names objects in collections
using the CNRI Handle system [9]. We are
using the experimental and unregistered handles
of Òncstrlplus.larcÓ and Òncstrplus.odu.csÓ.
Meta-data for objects is stored in the RFC-1807
format [13].

The basic architecture of NCSTRL has a
single entry point (Òhome pageÓ) for user access.
Each publishing authority (in practice, an
authority generally corresponds to a university
department or laboratory) runs its own copy of
the Dienst software. The home page gathers the
queries and dispenses the queries in parallel to
each server, gathers the results, and displays the
correlated results to the user. To assist with
performance and reliability, Dienst now employs
a Regional Meta-Server (RMS) to partition all
NCSTRL participants into geographic regions.
The various RMSs share their data with the
Master Meta Server (MSS) at Cornell (the home
of Dienst and NCSTRL). A Merged Index Server
(MIS) provides a single index of all the metadata
outside a region. A search query is sent to all
standard sites within a region, and to the regionÕs
MIS for metadata outside the region.

3.2 Modifications to Dienst

Clusters are a way of aggregating
logically grouped sub-collections in a DL along
some criteria. NCSTRL+ provides 3 clusters:
organization, data genre, and subject category.
Genre is a term provided by E. Fox in a private
communication and refers to distinguishing
between journal articles, technical reports, theses
and dissertations, etc.

Dienst currently carries no concept of
subject category in its protocol, despite having
provisions for specifying keywords from the
title, authors, and abstract. In fact, digital
libraries using the Dienst protocol such as
NCSTRL have the implicit assumption that all
holdings are computer science related. We have
modified some of the Dienst verbs to take 2 new
fields to specify the clusters,
ncstrlplus_sti_topics and
ncstrlplus_search_genres. We use the already
defined authority field for the organization
cluster. These new fields were our initial attempt
to demonstrate cluster functionality to the user.
The term ÒclustersÓ for this purpose is due to C.

Lagoze, who in a private communication
proposed a new Dienst service (for a total of six
Dienst services), a separate cluster service
allowing the creation of clusters of Dienst servers
along arbitrary criteria. If this new cluster
service is added to a future version of Dienst,
then our modifications will not be used in a
production release of Dienst. Minimizing the
number of source code modifications necessary
was a high priority and we have been able to
limit our changes to less than 10 of the nearly
150 files in the Dienst 4.1.8 distribution.

A separate service may not be necessary
to provide a robust cluster functionality. An
alternative to providing a new service is to
provide cluster arguments to the appropriate
message verbs in existing clusters. Table 1 lists
the proposed verb modifications to provide
clusters without a separate cluster service.
However, the final decision on the direction of
the production version of Dienst will reside with
the NCSTRL Steering and Working Groups.

Table 1. Proposed Cluster Arguments to Verbs
Service Message Verb Argument Argument

Type
Index List-Contents cluster= optional
Index SearchBoolean cluster= optional
Meta Publishers cluster= optional
Meta Indices cluster= optional
Meta Repositories cluster= optional
Meta Lite cluster= optional
UI Search none N/A
UI QueryNF cluster= optional
UI BrowseYears cluster= optional
UI ListYears cluster= optional
UI BrowseAuthors cluster= optional
UI ListAuthors cluster= optional
LibMgt ListClusters

(proposed)
none N/A

LibMgt DescribeClusters
(proposed)

none N/A

For the NCSTRL+ prototype, we
adopted the NASA STI subject categories. A full
listing of the subject categories can be found in
[15]. The NASA STI topics are attractive since
they are familiar to the majority of our customer
base, and they also provide over 100 subtopics
while producing only a small number of high
level topics (Table 2). The NASA STI topics
have a decidedly aerospace slant, but they have a
reasonable description of other disciplines, and
appeared to be more general than similar listings
from places such as the Defense Technical
Information Center (DTIC). Most professional
societyÕs cataloging schemes are too focused on
their specific discipline to provide the general
framework for NCSTRL+.

Table 2. NASA STI Main Topics
Subject Category Code

Aeronautics 01
Astronautics 12
Chemistry and Materials 23
Engineering 31
Geosciences 42
Life Sciences 51
Mathematical and Computer Sciences 59
Physics 70
Social Sciences 80
Space Sciences 88

NCSTRL+ reads its known subject and
genre categories from preference files, so future
augmentation or replacement of this list should
not be difficult. The NASA STI topics are not
meant to replace an institutionÕs use of any
subject specific categories, such as the ACM CR
categories. Rather, NCSTRL+ will maintain a
mapping of how various specialized classification
schemes map into the larger NASA STI topics .
The NASA STI topics for NCSTRL+ are
implemented as a new optional and repeatable
field in RFC-1807 format.

Table 3 shows the currently defined
values for the genre cluster. These values are
drawn from our own STI experience, unlike the
NASA STI subject categories which are borrowed
from an organization that is charged with
maintaining such a list. Additional values for a
usable set of genres across many disciplines may
need to be created. In particular, the present
genre Òdata collectionsÓ will likely be replaced by
a set of more descriptive entries. Hierarchical
entries, such as that present in the NASA STI
subject categories, may be needed. Also, it may
be desirable to have the ability for discipline-
centric genre codes to co-exist with NCSTRL+
general genres, much like society-defined subject
categories co-exist within the framework provided
by the NASA STI subject categories. However,
more experience is needed before implementation
recommendations can be made.

Table 3. Defined Genres in NCSTRL+
Genre Code
Courseware 1
Agency/Project Reports 2
Contractor Reports 3
Theses/Dissertations 4
Conference Papers 5
Journal Articles 6
Technical Reports 7
Books 8
Patents 9
Data Collections 10

4. Buckets

Buckets are object-oriented container
constructs in which logically grouped items can
be collected, stored, and transported as a single
unit. For example, a typical research project at
NASA Langley Research Center produces
information tuples: raw data, reduced data,
manuscripts, notes, software, images, video, etc.
Normally, only the report part of this
information tuple is officially published and
tracked. The report might reference on-line
resources, or even include a CD-ROM, but these
items are likely to be lost or degrade over time.
Some portions such as software, can go into
separate archives (i.e., COSMIC or the Langley
Software Server) but this leaves the researcher to
re-integrate the information tuple by selecting
pieces from multiple archives. Most often, the
software and other items, such as datasets are
simply discarded. After 10 years, the manuscript
is almost surely the only surviving artifact of the
information tuple.

Large archives could have buckets with
many different functionalities. Not all bucket
types or applications are known at this time.
However, we can describe a generalized bucket as
containing many formats of the same data item
(PS, Word, Framemaker, etc.) but more
importantly, it can also contain collections of
related non-traditional STI materials
(manuscripts, software, datasets, etc.) Thus,
buckets allow the digital library to address the
long standing problem of ignoring software and
other supportive material in favor of archiving
only the manuscript [21] by providing a common
mechanism to keep related STI products together.
A single bucket can have 0 or more packages.
Packages can correspond to the semantics of the
information (manuscript, software, etc.), or can
be more abstract entities such as the metadata for
the entire bucket, bucket terms and conditions,
pointers to other buckets or packages, etc. A
single package can have 1 or more elements,
which are typically different file formats of the
same information, such as the manuscript
package having both PostScript and PDF
elements. Packages and elements are illustrated
in Figure 1.

4.1 Bucket Requirements

All buckets have unique ids (CNRI
handles) associated with them. Buckets are of

arbitrary size, and there is no defined limit on the
number of packages a bucket can contain, nor the
number of elements a package can contain. Both
packages and elements can be ÒpointersÓ to
remote objects, including other buckets, bucket
packages, or bucket elements.

Figure 1: Bucket Architecture

Buckets are intended to be either
standalone objects or to be placed in digital
libraries. A standalone bucket can be accessible
through normal WWW means without the aid of
a repository. Buckets are intended to be useful
even in repositories that are not knowledgeable
about buckets in general, or possibly just not
about the specific form of buckets. Buckets
should not lose functionality when removed from
their repository. The envisioned scenario is that
NCSTRL+ will eventually have moderate
numbers of (10s - 100s of thousands) of
intelligent, custom buckets instead of large
numbers (millions) of homogenous buckets.
Traditionally, repositories contain all the
intelligence and functionality for accessing its
contents. Buckets provide the ability to shift
some or all of the this intelligence to the
archived object itself. This could be most useful
when individual buckets require custom terms and
conditions for access (security, payment, etc.).

Table 4 lists the required bucket
methods; other methods can be custom defined.
These are the only defined means of interaction
with buckets. Note that Table 4 differs from
protocols such as the Repository Access Protocol
(RAP) [12] in that we have defined actions
buckets perform on themselves, not actions a

repository performs on buckets. Although the
two are not mutually exclusive, the current plan
is to not implement RAP for NCSTRL+.

Table 4. Required Bucket Methods
Method Description
metadata returns the bucketÕs metadata in its

native form
display default method; bucket ÒunveilsÓ

itself to requester
id returns the bucketÕs unique

identifier (handle)
tc describes the nature of the

bucketÕs terms and conditions
list_methods list all methods known by a bucket
list_owners list all principals that can modify

the bucket
add_owner add to the list of owners
delete_owner delete from the list of owners
add_package adds a package to an existing

bucket
delete_package deletes a package from an existing

bucket
add_element adds an element to an existing

package
delete_element deletes an element from an

existing package
get_package get all elements within a package
get_element get a single element within a

package
add_method ÒteachesÓ a new method to an

existing bucket
delete_method removes a method from a bucket
copy_bucket export a copy of a bucket, original

remains
move_bucket move the original bucket, no

version remains

4.2 Bucket Tools

There are two main tools for bucket use.
One is the author tool (Figure 2), which allows
the author to construct a bucket with no
programming knowledge. Here, the author
specifies the metadata for the entire bucket, adds
packages to bucket, adds elements to the
packages, provides metadata for the packages, and
selects applicable clusters. The author tool
gathers the various packages into a single
component and parses the packages based on
rules defined at the authorÕs site. Many of the
options of the author tool will be set locally via
the second bucket tool, the management tool.
The management tool provides an interface to
allow site managers to configure the default
settings for all authors at that site. The
management tool also provides an interface to
query and update buckets at a given repository.
Additional methods can be added to buckets
residing in a repository by invoking the
add_method on them and transmitting the new
code. From this interface, the manager can halt
the archive and perform operations on it,
including updating or adding packages to
individual buckets, updating or adding methods to

Terms and Conditions

Metadata (1807, Dublin Core)

Manuscript .ps .pdf .tex .doc

Software .tar .c .java

images .gif .jpeg

data sets .xls .tar

. . .

Handle
(unique id) Access Methods

Elements
inside the
package

Packages
inside the
bucket

groups of buckets, and performing other archival
management functions.

Figure 2: Author Tool

4.3 Bucket Implementation

In the previous section, we defined the
requirements of bucket functionality independent
of implementation. Our bucket prototypes are
written in Perl 5, and make use of the fact that
Dienst uses HTTP as a transport protocol.
Dienst has all of a documentÕs files gathered into
a single Unix directory. A bucket follows the
same model and has all relevant files collected
together using directories from file system
semantics. Thus a Dienst administrator can cd
into the appropriate directory and access the
contents. However, access for regular users
occurs through the WWW. The bucket is
accessible through a Common Gateway Interface
(CGI) script that enforces terms and conditions,
and negotiates presentation to the WWW client.

The philosophy of Dienst is to
minimize the dependency on HTTP. Except for
the User Interface service, Dienst does not make
specific assumptions about the existence of
HTTP or the Hypertext Markup Language
(HTML). However, Dienst does make very
explicit assumptions about what constitutes a
document and its related data formats. Built into
the protocol are the definitions of PostScript,
ASCII text, inline images, scanned images, etc.
To add a new file format, such as the increasingly
popular PDF, Dienst configuration files have to
be changed. If the protocol was resident only at
one site, this would be acceptable. However,

Dienst servers are running at nearly 100 sites --
protocol additions require a coordinated logistical
effort to synchronize versions and provide
uniform capability.

We favor making Dienst less
knowledgeable about dynamic topics such as file
format, and making that the responsibility of
buckets. In NCSTRL+, Dienst is used as an
index, search, and retrieval protocol. When the
user selects an entry from the search results,
Dienst would normally have the local User
Interface service use the Describe verb to peer
into the contents of the documents directory
(including the bib meta data file), and Dienst
itself would control how the contents are
presented to the user. In NCSTRL+, the final
step of examining the directories structure is
skipped, and the directoryÕs index.cgi file is
invoked. The default method for an
index.cgi is generally the display method, so
the user should notice little difference. However,
at that point Dienst is no longer determining
what the user sees, the bucket is.

5. Using NCSTRL+

NCSTRL is successful in part because
it is ÒeasyÓ to use, both as a user searching the
archive and as an author publishing into the
archive. We must prevent the additional
functionality of NCSTRL+ from significantly
altering the usage profiles that NCSTRL users
and contributors have come to expect.

5.1 Searching NCSTRL+

NCSTRL+ searching is similar to
searching NCSTRL, with the addition of
specifying desired clusters to search. Figure 3
shows the how the advanced fielded search form
of NCSTRL+ is modified, allowing the selection
of desired subject categories and data genres. A
search results page includes the keyword and
cluster hit results. The user will select the
desired bucket from this page. At that point, the
bucket will return the defined default initial
interface of the bucket, which will be dependent
on the bucket contents and the rules present. In
practice, the bucket presentation will look largely
similar to the choices available to current users
of NCSTRL. This is especially true if the
buckets in which they are interested only contain
various manuscript formats. However, the real
benefit is the richer presentation formats

available if the bucket has non-manuscript
packages. Our initial bucket interface is similar
to NCSTRL, with the exception that the
additional data semantics are presented (software,
datasets, etc.).

5.2 Publishing into NCSTRL+

The goal of NCSTRL+ is to produce
the least intrusive interface possible to the
author. The authoring process for NCSTRL+ is
to be as similar to authoring into NCSTRL as
possible. Additions include the ability to add to a
bucket multiple data semantics and formats
through using multiple selection boxes to select
local files. Publishing a manuscript in
NCSTRL is equivalent to publishing a package
in NCSTRL+, and publishing a bucket is the
sum of publishing all of its packages. The
author also has to choose the appropriate cluster
to place the new bucket in. This step can be
skipped if the site manager has defined a default,
or if authors have saved a value already in their
preferences.

6. Future Work

We are using the author tool to populate
NCSTRL+ to gain insight on how to improve
its operation. We are starting with buckets
authored at Old Dominion University and NASA
Langley Research Center and are choosing the
initial entries to be ÒfullÓ buckets, with special
emphasis on buckets relating to NSF projects for
ODU and for windtunnel and other experimental
data for NASA. Until NCSTRL+ becomes a full
production system, we are primarily seeking rich
functionality buckets that contain diverse sets of
packages.

It is also important to note that adding a
subject category mechanism to NCSTRL+
provides the necessary groundwork for additional
services for digital libraries using Dienst. These
could include subject-based browsing of
NCSTRL+ holdings, as well as selected
dissemination of information (SDI). This would
be most useful if users were offered a
subscription option to receive digested updates
(i.e., e-mail messages) of new additions to
NCSTRL+ in specified subject areas. The initial
defined subject categories for NCSTRL+ and
cross-listing them with other subject-specific

Figure 3: Cluster Specification in NCSTRL+

categorization schemes is intended to provide a
working framework for evaluating the prototype.
As more experience in NCSTRL+Õs use is
gained, the fine tuning of the subject categories
and appropriate cross listing becomes an area that
would benefit from the attention of a professional
cataloger.

We are also planning to implement
buckets using Lotus Notes and Domino in
addition to the current CGI and Perl
implementation. The bucket API as defined in
Table 5 will remain unchanged. In
experimenting with Notes and Domino, we also
plan to investigate implementing NCSTRL+
components without using Dienst. We plan to
evolve NCSTRL+ to support a generalized
publishing and searching model that can be
implemented using Dienst or other DL protocols.
Figure 4 illustrates the generalized DL
architecture.

7. Conclusions

To meet the increased requirements for multi-
disciplinary activities in educational and scientific
communities, we have prototypes of NCSTRL+
and are in the process of full implementation.
The most significant technology from this
project is the concept of buckets as a construct to
capture multiple data formats and genres in an
intuitive manner. NCSTRL+ provides a platform
for experimentation for testing user response to
multi-discipline clusters and logical collections
of STI. We are in the process of experimenting
with users at NASA and Old Dominion
University.

From the usersÕ perspective, the publishing and
searching interfaces are largely unchanged.
However, it is unknown what impact the cluster
and bucket modifications have on network load,
search and retrieval times, the usersÕ perceived
quality of searching multiple clusters, etc. To
determine these unknowns, NCSTRL+ will have
to grow to a large enough size to be considered a
useful production system. The authors seek other
users and participants for NCSTRL+.

8. References

[1] ACM SIGIR On-Line Conference Proceedings,
http://turing.acm.org:8071/

[2] S. Adler, U. Berger, A. Bruggemann-Klein, C.
Haber, W. Lamersdorf, M. Munke, S. Rucker, & H.
Spahn, ÒAn Electronic Library for Grey Literature
based on NCSTRL,Ó 1997.
http://medoc.informatik.unihamburg.de/Dienst/htd
ocs/dagstuhl/dagstuhl.ps

[3] J. L. Borbinha, J. Ferreira, J. Jorge, & J .
Delgado, ÒA Digital Library for a Virtual
Organization,Ó Proceedings of the 31st Hawaii
International Conference on Systems Science
(HICSS-31), January 6-9, 1998.

[4] S. Browne, J. Dongarra, E. Grosse, S. Green, K.
Moore, T. Rowan, & R. Wade, ÒNetlib Services and
Resources,Ó University of Tennesse Technical
Report UT-CS-93-222, 1993.

[5] J. R. Davis, D. B. Krafft, & C. Lagoze, ÒDienst:
Building a Production Technical Report Server,Ó
Advances in Digital Libraries, Springer-Verlag,
1995, pp. 211-222.

Metadata Archive

Dienst, Domino,
or other

Publishing
User

Searching
User

API

Publishing
Process

Searching
Process

Data Archive

Dienst, Domino,
or other

Results

API

Figure 4. General NCSTRL+ Architecture Without Dienst Dependencies

[6] S. L. Esler & M. L. Nelson, ÒThe Evolution of
Scientific and Technical Information Distribution,Ó
Journal of the American Society of Information
Science, 49(1), 1998, pp. 82-91.

[7] E. Fox, J. Eaton, G. McMillan, N. Kipp, L.
Weiss, E. Arce, & S. Guyer. ÒNational Digital
Library of Theses and Dissertations: A Scalable and
Sustainable Approach to Unlock University
Resources,Ó D-Lib Magazine, The Magazine o f
Digital Library Research, Sep. 1996.
http://www.dlib.org/dlib/september96/theses/09fo
x.html

[8] R. Kahn, "An Introduction to the CS-TR
Project,Ó December 1995.
http://www.cnri.reston.va.us/home/describe.html

[9] R. Kahn, ÒThe Handle System Version 3.0: An
Overview.Ó
http://www.handle.net/docs/overview.html

[10] R. Kahn & R. Wilensky, ÒA Framework for
Distributed Digital Object Services,Ó cnri.dlib/tn95-
01, May, 1995.
http://www.cnri.reston.va.us/home/cstr/arch/kw.ht
ml

[11] C. Lagoze, E. Shaw, J. R. Davis, & D. B.
Krafft, ÒDienst: Implementation Reference Manual,Ó
Cornell Computer Science Technical Report TR95-
1514, 1995.

[12] C. Lagoze & D. Ely, ÒImplementation Issues in
an Open Architectural Framework for Digital Object
Services,Ó Cornell University Computer Science
Technical Report, TR95-1540, June, 1995.

[13] R. Lasher, & D. Cohen, ÒA Format for
Bibliographic Records,Ó Internet RFC-1807, June
1995.

[14] K. Maly, J. French, A. Selman, & E. Fox,
ÒWide Area Technical Report Service,Ó Proceedings
of the Second International World Wide Web

Conference, Chicago, IL, October 21-23, 1994, pp.
523-533.

[15] NASA Scientic and Technical Information
Program, ÒNASA STI Topics.Ó
ftp://ftp.sti.nasa.gov/pub/scan/SCAN-TOPICS

[16] M. L. Nelson, G. L. Gottlich, D. J. Bianco, S.
S. Paulson, R. L. Binkley, Y. D. Kellogg, C. J .
Beaumont, R. B. Schmunk, M. J. Kurtz & A.
Accomazzi, ÒThe NASA Technical Report Server,Ó
Internet Research: Electronic Networking
Applications and Policy, 5(2), 1995, pp. 25-36.

[17] M. L. Nelson, G. L. Gottlich & D. J. Bianco,
ÒWorld Wide Web Implementation of the Langley
Technical Report Server,Ó NASA TM-109162,
September 1994.

[18] M. L. Nelson, K. Maly & S. N. T. Shen,
ÒBuckets, Clusters and Dienst,Ó Old Dominion
University Computer Science Technical Report 97-
30, July 1997. (Also available as NASA TM-
11287)

[19] M. L. Nelson & S. L. Esler, ÒTRSkit: A Simple
Digital Library Toolkit,Ó Journal of Internet
Cataloging, 1(2), pp. 41-55.

[20] D. G. Roper, M. K. McCaskill, S. D. Holland,
J. L. Walsh, M. L. Nelson, S. L. Adkins, M. Y.
Ambur & B. A. Campbell, ÒA Strategy for Electronic
Dissemination of NASA Langley Technical
Publications,Ó NASA TM-109172, December 1994.

[21] J. Sobieszczanski-Sobieski, ÒA Proposal: How
to Improve NASA-Developed Computer Programs,Ó
NASA CP-10159, 1994, pp. 58-61.

[22] UVa SEAS Electronic Undergraduate Thesis
Pilot,
http://univac.cs.virginia.edu:3066/SEAS_ETD.htm
l

